Friday, January 15, 2010

functions of structural engineer

CONSULTATIVE PAPER ( Working draft : 11 August 2002)

THE ROLE AND FUNCTION OF STRUCTURAL ENGINEERS AND STRUCTURAL ENGINEERING TECHNOLOGISTS IN SOUTH AFRICA

Joint Structural Division of the South African Institution of Civil Engineering and the Institution of Structural Engineers


1 Introduction

Structural engineering is the science and art of designing and making, with economy and elegance, buildings, bridges, frameworks, and other similar structures so that they can safely resist the forces to which they may be subjected. A structural engineer is accordingly a person who practices structural engineering. His work as such may include:

• Design (initiating ideas, feasibility analysis, technical supervision, safety of finished structures, converting an architect's visions into functional reality and the like).
• Management of projects, personnel, finances, materials and production.
• Construction.
• Maintenance, and ultimately demolition.
• Risk assessment for public protection, defining and maintaining safety standards and the carrying out of structural integrity assessments.
• Acting in a "watchdog" role by ensuring compliance with National Building Regulations, planning and safety legislation.
• Research and teaching

Structural engineers are responsible for applying engineering principles to ensure that loss of life and damage to property during the lifetime of a structure due to the instability or lack of strength, serviceability or durability of a structure or part thereof is within acceptable and legal limits. Structural engineers need to provide safe and effective solutions with a high degree of certainty to demanding structural requirements where the constraints are often complex and sometimes conflicting.

The tasks associated with structural engineering vary in complexity. Accordingly different skills are required for different tasks.

2 Building safety

Section 24 of the Bill of Rights contained in the Constitution of the Republic of South Africa states that “everyone has the right ¬ to an environment that is not harmful to their health or well-being”. The modern habitat i.e. the buildings in which people live, is an integral part of the environment and, as such, needs to be safe. The regulations issued in terms of the National Building Regulations and Building Standards Act (Act 103 of 1977) give effect to this right in a wide range of structures which are constructed for the accommodation, occupation or convenience of people including places of work and storage, tanks, reservoirs, bridges and the like. The Housing Consumers Protection Measures Act (Act 95 of 1998) reinforces this right in residential structures. The National Water Act (Act 36 of 1998) gives effect to this right in terms of dam construction.

The National Building Regulations and Building Standards Act (Act 103 of 1977) prohibits persons from erecting buildings without prior written approval from a local authority; requires local authorities to appoint building control officers to exercise powers and duties assigned to such persons and to issue certificates of occupancies; and empowers local authorities to evict owners of buildings, or any person having an interest in a building, who occupy the building in the absence of the aforementioned certificate. The regulations to the Act provide functional requirements relating to health and safety while SABS 0400 (the application of the National Building Regulations) interprets such requirements.

Structural safety requirements currently can be satisfied in terms of the National Building Regulations by adhering to deemed-to-satisfy rules, the preparing of a rational design by a professional engineer or other approved competent person or through Agrément certification. The provisions of the National Building Regulations in effect “licence” professional engineers or other persons approved by the local authority to self certify their work. Local authorities are, however, often, due to capacity constraints, not in a position to exercise this discretion and often resort to the acceptance of only a professionally registered person with the Engineering Council of South Africa.

Law makers have in the Housing Consumers Protection measures Act and the National Water Act recognised that professional registration may not be a sufficient credential for determining competence and have accordingly given those responsible for implementing these acts the final say as to whose credentials are acceptable, subject to such persons being registered persons. (The Housing Consumers Protection Measures Act permits the NHBRC to keep a record of competent persons and to approve such persons. The National Water Act permits the minister to approve competent persons.)

3 Current controls

The engineering profession in South Africa is regulated through registration. Registration is linked to the attainment of prescribed tertiary education levels at accredited institutions and experience in an acceptable work environment for a period of time prior to registration . Registered engineers are bound by a code of ethics that prohibits them from assuming responsibility for work for which they are not competent to perform and requires them to place public safety above all else. Breaches in these code of ethics may result in an appropriate sanction including deregistration.

In South Africa, the Engineering Professions Act (Act 46 of 2000) makes provision for qualified engineers to be registered in one of four categories:

• Professional Engineer;
• Professional Engineering Technologist;
• Professional Certificated Engineer; and
• Professional Engineering Technician.

There is an argument for accepting registered persons as being competent to perform work as in terms of the code of ethics they may only undertake work that they are competent to perform. This approach relies on the integrity of engineers and regulates registered engineers in a reactive manner – when things go wrong, the public has legal recourse against the actions of an engineer.



4 Recent trends in structural safety

A Standing Committee on Structural Safety (SCOSS) in the United Kingdom, established by the Health and Safety Executive, ICE and IStructE, is tasked with giving warnings where unacceptable risk is believed to exist. The findings of its thirteenth report highlights a number of issues which South African society needs to heed, given the Constitutional imperatives for safety in buildings, viz:

• The control of risks to structural safety depends primarily on the competence and integrity of individuals and organisations. The possibility that individuals or organisations might not be competent, or that their competence might be affected by commercial or other pressures is a risk to structural safety and needs to be controlled.

• The certification of structural safety-related work should be entrusted only to appropriately qualified and experienced engineers.

In South Africa, due to time pressures to address new aspects of civil engineering, tertiary institutions are spending less time on the teaching of the fundamentals of structural engineering. At the same time public institutions and large firms of consulting engineers which traditionally recruited many newly qualified engineers and turned them into structural engineers under the mentorship of seasoned and experienced structural engineers, either no longer do so or do so with very limited numbers.

In the light of international trends for engineers to demonstrate their competence and the decline in the training of structural engineers, it is necessary to rethink the approach to structural safety. Sole reliance on a reactive approach to the regulation of structural safety is probably no longer appropriate. A proactive approach needs to be pursued in conjunction with an reactive one.

5 Defining a Structural Engineer in terms of the South African Qualifications Framework

The Joint Structural Division of SAICE, in seeking to address this problem during 2000, examined the Institution of Structural Engineers’ (IStructE) core objectives for Initial Professional Development and their written examinations for admission as a corporate member in the light of the National Qualifications Framework (NQF) provided for in terms of the South African Qualifications Act (Act 58 of 1995) . It was noted that qualifications and standards registered on the NQF are described in terms of the learning outcomes that the qualifying learner is expected to have demonstrated. The Structural Division prepared the following unit standard for Structural Engineering based on the IStructE core objectives for Initial Professional Development and an in depth examination of past admission examination papers for corporate membership:

Outcome 1 :Communicate the environment within which structural engineering is practised.

Assessment criteria

• Professional bodies associated with structural engineering are described.

• Codes of conduct regulating structural engineering are described.

• Legislation governing structures is described.

• Procurement arrangements for structural engineering works are identified.

• Quality assurance systems are identified


Outcome 2: Produce viable structural solutions, within the scope of a design brief, taking account of structural stability, durability, aesthetics and cost.

Assessment criteria

• A brief is appraised in accordance with structural engineering principles and concepts.

• Approximate structural engineering solutions are identified.

• Two different structural designs are developed from a brief and are communicated.

• The implications of changes to design briefs are identified and communicated.


Outcome 3 : Determine and document the form and size of principal structural elements from a proposed structure.

Assessment criteria

• Structural engineering problems are solved using a variety of suitable methods of analysis.

• Structures are appraised for overall stability, resistance to progressive collapse, fire and performance of a structure as a whole.

• Compliance with all relevant criteria for the design of primary structural materials (concrete, steel, masonry and timber) is demonstrated by calculation with all assumptions stated

• General arrangement plans, sections and elevations are prepared for estimating purposes.

• Connection details associated with a given structure are sketched.


Outcome 4 : Specify and co-ordinate the use of primary structural materials

Assessment criteria

• Properties and behaviour of primary construction materials (concrete, masonry, timber and steel) are defined.

• Testing procedures are defined.

• Storage and handling procedures are described

• Construction standards are described.





Outcome 5 : Communicate construction techniques and sequencing for structural engineering works

Assessment criteria
• Basic construction techniques and equipment are identified
• Construction programmes and construction sequencing are described

• Site activities and safe working methods pertaining to structures are communicated.

6 Recognising demonstrated competence in structural engineering

Structural engineering can be performed at a number of levels. In South Africa, it would be inappropriate to require all structural engineers to demonstrate their competency at the highest level of structural engineering. It is accordingly necessary to look at two levels of structural engineering. It should be noted in this regard that the Institution of Structural Engineers is licensed by the United Kingdom’s Engineering Council to determine whether or not persons are eligible for registration with the Council as Chartered Structural or Incorporated Structural Engineers. Candidates for Chartered Structural Engineers must demonstrate an ability to evaluate and develop effective solutions to structural design problems that are safe and fulfil their intended functions and be able to communicate design intentions. Candidates for Incorporated Structural Engineers must, on the other hand, demonstrate an ability to interpret instructions into practical structural designs and details.

An examination of the differences in the Institution’s examinations between corporate membership (Chartered Structural Engineer) and associate membership (Incorporated Structural Engineer) indicate that the fundamental differences between these two types of engineers can be summarised as follows:


Description Chartered Structural Engineer Incorporated Structural Engineer
Understanding of structural engineering principles. Understands core principles. Understands fundamental principles.
Use of technology Is able to locate and use new research and development to benefit their work. Is able to apply appropriate technology in their work.
Problem solving Is able to solve complex (unconventional) structural engineering problems. Is able to solve common (conventional) engineering problems.

The competencies required for Incorporated Structural Engineers are the same as that for Chartered Structural Engineers, except that competencies are assessed at a lower level.

The Joint Structural Division is of the view that demonstration of competencies in respect of the abovementioned unit standards could permit engineers to demonstrate their competencies as Structural Engineers and Structural Engineering Technologists, which would be indicative of having the ability to independently design the following structures in areas not subject to seismic activity:














DESIGNATION TYPE OF STRUCTURES WHICH MAY BE DESIGNED LIMITATIONS PLACED ON SPECIFIED ELEMENTS
Structural Engineer All types of structures including residential, institutional, commercial and industrial buildings, towers, bridges, culverts and mining and containment structures nil
Structural Engineering Technologist One family houses which may be separated or linked horizontally but not linked vertically and has its own access and do not share any common space. Span of floor slab  7m.
All structural elements fall within the scope of national or JSD codes of practices

Residential buildings not exceeding 2 storeys in height. Span of floor slab  7m.
Storey height  6m.
All structural elements fall within the scope of national or JSD codes of practices .
Retail premises, commercial and institutional buildings not exceeding 2 storeys Span of floor slab  7m.
Storey height  6m.
Steel roof span  25m
Timber roof span  10m
All structural elements fall within the scope of national or JSD codes of practices.
Commercial, agricultural and institutional storage facilities and warehousing not exceeding one storey. Cranes which are frequently subjected to the safe working load and are normally subjected to loads which are relatively close to the safe working load.
Storey height  6m.
Steel roof span  25m
Timber roof span  10m
All structural elements fall within the scope of national codes of practices.
Reinforced concrete framed buildings, irrespective of occupancy, not exceeding 5 storeys Span of floor slab  7m.
Storey height  6m.
Steel roof span  25m
Timber roof span  10m
All structural elements fall within the scope of national codes of practices.
Freestanding and retaining walls Walls falling within the scope of national codes of practices.
Notes: Span is the horizontal distance between the face of supports.
Storey height is the vertical distance between upper surface of a floor slab / surface bed and the underside of a floor / eaves beam/ roof truss / purlin beam.
JSD= Joint Structural Division of SAICE / IStructE


7 Linking registration with the Engineering Council of South Africa with demonstrated competencies in structural engineering

Demonstration of competencies as a Structural Engineer or a Structural Engineering Technologist in terms of the abovementioned Unit standards need not be linked to formal academic qualifications. They can be linked to prior registration in any of the ECSA registration categories as indicated below:










Accordingly, a Professional Engineering Technologist who demonstrates competence as a Structural Engineer will be recognised as having the capabilities of performing structural engineering work as a Structural Engineer; a Professional Engineer who demonstrates competence as a Structural Engineering Technologist will be recognised as a Structural Engineering Technologist; etc. A registered engineer who has demonstrated competence as a Structural Engineering Technologist is free at any stage to demonstrate competence as a Structural Engineer in order to be recognised as such. In this way there is a continuous career path for all registered engineers on the basis of demonstrated competence as opposed to the acquisition of academic qualifications.

Structural Engineers and Structural Engineering Technologists, will as registered persons still be required in terms of the code of ethics to undertake only work for which they are competent to perform and to have the utmost regard for public safety. This approach, if linked to the National Building Regulations will provide both a proactive and reactive means of regulating the profession as a competent person who assumes responsibility for work in terms of these regulations will be governed by a code of ethics and have demonstrated abilities in structural engineering. Complaints relating to the beaching of the code of ethics would be referred to ECSA in accordance with the provisions of the Engineering Professions Act.

The Joint Structural Division is competent to make a determination as whether or not a candidate is able to demonstrate competency in one of the two levels. This it can achieve by requiring mature candidates (ie those who are above 35 years of age) to demonstrate their competence through a professional interview and the presentation of a portfolio of work undertaken. Non-mature candidates can demonstrate their competence through the writing of the IStructE examinations under the invigilation of the Joint Structural Division and the marking of examination scripts by IStructE. (See Figure 1). (In time, the mature candidate route will be phased out so that all engineers sit the examination. All engineers practicing structural engineering will be encouraged to demonstrate their competence.)

Continuing education to maintain competence will be in accordance with the approach recently adopted by SAICE.

8 Proposed changes to the National Building Regulations

It is proposed that the definition for a competent person in the National Building Regulations be amended to read as follows:

Competent person means a person registered in terms of the Engineering Profession Act (Act 46 of 2000) or a person registered in terms of section 11 of the Natural Scientific Professions Act (Act No. 106 of 1993) and who is qualified by virtue of his experience and training to act in terms of these regulations.

Regulation A19 (Appointment of Persons Responsible for Design, Inspection and Assessment Duties ) will also need to be amended to interpret “who is qualified by virtue of his experience and training”. A competent person in relation to structures will be defined as one who is recognized by the Joint Structural Division of the SAICE and IStructE as a Structural Engineer or a Structural Engineering Technologist.

In terms of this amended regulation, Structural Engineers will be able to assume responsibility for work relating to all types of structures. Structural Engineering Technologists will be able to assume responsibility for structural work within their competencies as described above and should they engage in work outside their competencies, such work must be checked by a Structural Engineer.

9 Benefits of the proposed approach for establishing the credentials of Structural Engineers / Structural Engineering Technologists.

The registration of Structural Engineers / Structural Engineering Technologists in terms of their demonstrated ability to perform outcomes has several benefits both to those responsible for implementing the National Building Regulations and those implementing the Housing Consumers Protection Measures Act. These bodies can readily determine the competence of persons who are to assume responsibility for structures in terms of these pieces of legislation.

Client bodies who appoint Structural Engineers / Structural Engineering Technologists to perform services associated with structural engineering can minimise their risk exposure to structural defects as they will have the comfort that their appointed engineer (staff member or external consultant) has the necessary and appropriate credentials to render the required service. This has implications for organs of state (national and provincial departments, local authorities, and public enterprises and entities) who are required, in terms of the Public/Municipal Finance Management Act, to have a system of risk management in place .

Structural Engineers / Structural Engineering Technologists may, in the future, obtain reduced professional indemnity insurance premiums on the basis that the underwriter’s risk exposure is lessened through demonstrated competence in a field where their risk exposure to claims is on the increase.

Please address all comments / suggestions to:
Ron Watermeyer (Vice President SAICE (Technical Leadership) and Vice President IStructE)
Tel 011-402 4072
Fax 011-404-1728
Email watermeyer@ssinc.co.za





Addendum 1: Extracts from Dr Keith J Eaton (Chief Executive, The Institution of Structural Engineers) keynote address on the Recognition of Chartered (or Professional) Structural Engineer status in several countries, at the Second US National Summit on Separate Licensing of Structural Engineers, February 15-16, 2002, ASCE-SEI, Reston, Virginia

General

The Institution of Structural Engineers was founded in 1908, and its Royal Charter entitles Members (MIStructE) and Fellows (FIStructE) to use the designation “Chartered Structural Engineer”. The Institution has members living and working in some 105 countries around the world, and the Chartered Structural Engineer designation is widely recognised as an international passport to practise as professional structural engineers.

The Institution’s rigorous qualifying procedure involves a seven-hour examination of structural engineering competence. This procedure is unique, and the examination is taken in about 75 locations around the world, all on the same day. As a result of this rigorous test of competence, Members and Fellows of the Institution are recognised throughout the world on an even basis as being highly qualified and competent structural engineers. Furthermore, in some countries, Membership of the Institution leads automatically, or at least reasonably directly, to registration as a professional structural engineer in that country.

The Institution has specific agreements with other structural or civil engineering bodies in 13 countries, ranging in nature from a full mutual recognition agreement with the People’s Republic of China to a simpler Declaration of Intent with Japan.

Details of the importance of MIStructE and FIStructE in a number of countries, and of the linkages to registration or licensing, are given below.

People’s Republic of China (PRC)
In order to practise independently as a structural engineer in the PRC it is necessary to be a Registered Structural Engineer. Such registration can be achieved in only one of two ways:

(i) By taking the examination of the National Administration Board of Engineering Registration (Structural) or NABER(S) of the PRC.
(ii) By being MIStructE or FIStructE and using the Mutual Recognition Agreement which the IStructE has with NABER(S).

Moving on from one of those registration routes, when one design entity has four such Registered Structural Engineers working in its offices, then that organisation can obtain a Licence; it can then undertake structural designs without having to associate or collaborate with another Licensed office.

Hong Kong – the Special Administrative Region of the PRC
In order to practise as a professional engineer in Hong Kong an individual has to be a Registered Professional Engineer. In the case of structural engineering, such registration requires membership of the Structural Discipline of the Hong Kong Institution of Engineers (HKIE) or of another “engineering body the membership of which is accepted by the Engineers Registration Board as being of a standard not less than that of a member of HKIE”. Such membership of the HKIE Structural Discipline is generally achieved by being MIStructE or FIStructE, although a minority have direct entry through HKIE’s own examination route. However, HKIE actually franchises the setting and the running of its examination to IStructE. Hence, the very small minority of structural engineers who are not MIStructE have still passed the same IStructE examination as all other IStructE members.

Furthermore, in order to practise as a structural engineer in the private sector, an individual has to be a Registered Structural Engineer which requires a Registered Professional Engineer (Structural Discipline) to be assessed by the Hong Kong Buildings Department (which is responsible for building control). Hence, the reality is that the vast majority of Registered Structural Engineers in Hong Kong are MIStructE or FIStructE and the very small minority who are not have qualified by passing the same IStructE examination.

Singapore
Legislation in Singapore requires certified engineers to be responsible for all three stages of the design and construction process (design of structures, checking of the design and supervising the work on site). The IStructE examination and its quality and standard is greatly respected. The Institution of Structural Engineers has a Joint Agreement with the Institution of Engineers of Singapore, and a Joint Structural Division, and it is that Joint Division which can communicate with the PE Board in Singapore to develop the Board’s recognition of corporate membership of IStructE. At present it is not entirely clear from the PE Board information whether or not a MIStructE or FIStructE professional can be registered as a PE (Structural) for structural works. In addition, Singapore Registered Professional Engineers have to be in possession of an annually-renewable Practising Certificate (obtained from the PE Board) to practise in Singapore.


British Columbia, Canada
An engineer obtains a licence to practice by registering as a Professional Engineer with the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC). This is typically achieved through an accredited engineering degree, four years of training, and passing a professional practice examination.

A new public safety initiative has been launched where engineers who wish to accept responsibility for building projects by signing Letters of Assurance to a building authority, will need to register with APEGBC as a Structural Engineer of Record (SER). Applicants must be registered professional engineers with at least six years of experience in structural engineering, and have passed a qualifying structural examination. Acceptable examinations include those required for Structural Engineer (SE) registration in Washington State, and the seven-hour Chartered Membership examination of the Institution of Structural Engineers (IStructE). Applicants selecting the IStructE route and meeting the entry requirements may also apply for the MIStructE qualification. All SER applicants are also required to pass a four-hour locally administered examination testing BC Building Code knowledge and seismic design ability.

Japan
The Japan Structural Consultants Association (JCSA) is not an official licensing body, but it is concerned about maintaining the quality of structural engineering undertaken by engineers registered as structural engineers. It therefore conducts its own registration exams, the content being somewhat similar to the IStructE Chartered Membership examination.

New Zealand
In New Zealand for an engineer to practice he does not currently need to become registered, although the Registration Act is now being reviewed and modified. The title "Registered Engineer" currently exists in New Zealand but is likely to change to "Professional Engineer" (P.Eng) when the revised Act comes into force.

For professional structural engineers, the Institution of Structural Engineers and the Institution of Professional Engineers of New Zealand (IPENZ) have a joint agreement, and all structural engineers in both Institutions are members of the combined Structural Engineering Society, SESOC. In respect of membership of IPENZ, IStructE members are given a modified professional practice assessment for MIPENZ. The panel assesses the MIPENZ competencies in management, ethics and principles, and communication. MIStructE members are exempt from technical competencies if they have already passed IStructE Chartered Membership (Part 3) examination.

Australia
Registration of engineers is not mandatory in Australia, although some States do have legislation governing the practice of engineering. The Institution of Engineers Australia (IEAust) has established a national database - the National Professional Engineers Register (NPER). This identifies members (and non-members - you can apply to be on NPER without being MIEAust) whose qualifications, experience and Continuing Professional Development (CPD) are of the standard considered appropriate for independent professional practice in the field of their expertise. Structural Engineering is one of the areas of practice within NPER.

As IEAust embraces all engineering disciplines, members are assigned to a College appropriate to their field of practice. Thus structural engineers will generally be members of the Structural College. (Many IEAust structural engineers are also members of IStructE.) Thus a practising Structural Engineer would be expected to be a member of IEAust Structural College and be registered on the NPER in the area of practice of Structural Engineering. However it is not a mandatory requirement. Although not mandatory to be registered, NPER is being used increasingly as the measure of competence.

Australian States currently have different regulatory controls on engineering practice, e.g. Queensland has a Professional Engineers Act (and governing Board) which requires all engineering work to be carried out by a Registered Professional Engineer of Queensland (RPEQ). This can be an individual or company who satisfies the requirements of the Board of Professional Engineers. There are moves to make NPER registration as the qualifying standard for RPEQ.

The IEAust Structural College has recognised that MIStructE more than satisfies the requirements for MIEAust Structural College membership and registration on NPER in the area of Structural Engineering.


United Kingdom
There is no formal legal requirement within the UK for an engineer of any discipline to register to practice (except for engineering technicians working on aircraft engines, and a small panel of qualified dam engineers). There is, however, a general ‘preference’ within the engineering community for all engineers to be on the register of the Engineering Council (UK). Nevertheless, with or without this registration, anyone can call themselves an engineer.

Within structural engineering, where there is a key responsibility for public safety, Chartered (ie professional) Structural Engineers are qualified properly through IStructE membership procedures, and maintain their competence by submitting annual Continuing Professional Development (CPD) returns. This initial qualification plus annual maintenance of the competence leads on to the ability to be on a register for the professional design of structures, either under the government’s highway regulations, or the government’s building regulations.

Scotland
In Scotland, Chartered Structural Engineers are already able to approve their own designs under the Structure part of the Scottish Building Regulations, Technical Standards – provided they are paid-up members and on our Institution’s register.

Sunday, December 20, 2009

Philippines Banking Sector Analysis

Over a period of time, the banking industry of the Philippines has seen a transformation with the reforms being carried out by both the banking regulator and the government. The reform process has re...
Author: Shushmul Maheshwari

Global IT Security Market Remains Upbeat Despite Recession

Global IT security market, including security appliances, security software and security services, has continued to witness strong demand across all segments, indicating healthy growth prospects in c...
Author: Shushmul Maheshwari

A List of Tough Job Interview Questions For Tough Times

The information presented here is designed to provide a benefit to anyone who must answer questions during the dreaded job interview. The main point presented here is that the key to a successful job...
Author: Thomas Sullivan

my first post

look and pass scale

The following questionings ask your feeling about a number of things. Since we are all different, some people may think and feel one way; other people think and feel another way. There is no such thing as a “right”or”wrong”answer.The idea is to read each question and then fill out your answer. Try to respond to every question, even if it does not apply to you very well. The possible answers for each question are:

a=strongly agree.
b=moderately agree.
c=neutral.
d=moderately disagree.
e=strongly disagree

_ 1. Sometimes when people are talking to me, I find my self wishing that they would leave.
_ 2. My need for people is quite low.
_ 3. One of the things wrong with people today is that they are too dependent upon other people.
_ 4. My happiest experiences involve other people.
_ 5. People are not important for my personal happiness.
_ 6. Personal character is developed in the stream of life.
_ 7. I could be happy living away from people.
_ 8. It is important to me to be able to get along with other people.
_ 9. No matter what I am doing, I would rather do it in the company of other people.
_ 10. There is no question about it—I like people.
_ 11. Personal character is developed in solitude.
_ 12. In general, I don’t like people.
_ 13. Except for my close friends, I don’t like people.
_ 14. A person only has a limited amount time and people tend to cut into it.
_ 15. People are the most important thing in my life.